Trends in Reactive Nitrogen Emissions in Light-duty United States Vehicle Fleets #### Overview - NO_x (NO + NO₂), NH₃ are PM precursors; NO₂ is an immediate ozone forming pollutant. - Measured: CO₂, CO, HC, NO, NO₂ and NH₃, speed, acceleration, license - Over 67,000 vehicle measurements in 2013 and over 40,000 previous measurements from 2005 and 2008. - Previous measurement references: Burgard et al., Environ. Sci. Technol. 2006, 40, 7018-7022. Bishop et al. *Environ. Sci. Technol.* **2010,** 44, 3616-3620. ## Field Sampling Locations ### On-Road Measurement Summary | Location | Dates Sampled | Attempts | Matched | Mean Model
Year | |----------|---------------------------|----------|--------------|--------------------| | Denver | 6/1 – 3 2005 | 5,101 | 3,695 (72%) | 1998.7 | | Denver | 12/12,13 2013
1/4 2014 | 25,881 | 19,242 (74%) | 2005.2 | | Tulsa | 9/19 - 23 2005 | 26,627 | 18,890 (71%) | 1999.3 | | Tulsa | 9/30 - 10/4 2013 | 29,268 | 21,115 (72%) | 2006.3 | | West LA | 3/17 - 21 2008 | 23,579 | 17,953 (76%) | 2001.2 | | West LA | 4/27 - 5/4 2013 | 33,807 | 27,247 (81%) | 2004.7 | ### We Want to Thank our Sponsors! California Environmental Protection Agency Contract # 12-303 Air Resources Board Coordinating Research Council (E-106) Gary A. Bishop and Donald H. Stedman, University of Denver Department of Chemistry and Biochemistry Denver CO 80208. www.feat.biochem.du.edu ## Measured g/kg of fuel Emissions | Location | Mean g/kg of Fuel Emissions and Standard Errors of the Mean CO / HC / NO /NO ₂ / NO _x / NH ₃ (All Records) CO / HC / NO /NO ₂ / NO _x / NH ₃ (Non-Diesel) | %Reductions
CO / HC / NO /NO _x / NH ₃ | Mean Speed
Mean Acceleration | |----------------|--|--|---------------------------------| | Denver (2005) | 44.3 ± 3.0 / 4.0 ± 0.5 / 3.7 ± 0.9 / $N.A.$ / 5.6 ± 1.3 / 0.45 ± 0.1 44.9 ± 3.3 / 4.0 ± 0.5 / 3.2 ± 0.9 / $N.A.$ / 5.0 ± 1.4 / 0.47 ± 0.1 | | 25.1 mph
0.7 mph/sec | | Denver (2013) | $12.6 \pm 0.9 \ / \ 1.8 \pm 0.1 \ / \ 2.7 \pm 0.1 \ / \ 0.24 \pm 0.02 \ / \ 4.4 \pm 0.2 \ / \ 0.44 \pm 0.02$ $12.7 \pm 0.9 \ / \ 1.8 \pm 0.1 \ / \ 2.3 \pm 0.1 \ / \ 0.11 \pm 0.02 \ / \ 3.6 \pm 0.2 \ / \ 0.45 \pm 0.02$ | 72% / 55% / 27% / 21% / 2%
72% / 55% / 28% / 28% / 4% | 22.9 mph
0.01 mph/sec | | Tulsa (2005) | 33.5 ± 0.9 / 2.2 ± 0.2 / 2.9 ± 0.2 / 10.4 / $10.$ | | 24.5 mph
-0.4 mph/sec | | Tulsa (2013) | $13.4 \pm 0.4 \ / \ 2.1 \pm 0.3 \ / \ 1.5 \pm 0.04 \ / \ 0.14 \pm 0.02 \ / \ 2.5 \pm 0.1 \ / \ 0.43 \pm 0.01$ $13.6 \pm 0.4 \ / \ 2.1 \pm 0.3 \ / \ 1.3 \pm 0.03 \ / \ 0.06 \pm 0.02 \ / \ 2.0 \pm 0.1 \ / \ 0.44 \pm 0.01$ | 60% / 5% / 48% / 43% / 14%
60% / 5% / 48% / 49% / 14% | 24.3 mph
-0.01 mph/sec | | West LA (2008) | $21.4 \pm 0.5 \ / \ 1.8 \pm 0.1 \ / \ 3.8 \pm 0.3 \ / \ 0.08 \pm 0.02 \ / \ 5.9 \pm 0.4 \ / \ 0.79 \pm 0.02$ $21.7 \pm 0.5 \ / \ 1.8 \pm 0.1 \ / \ 3.5 \pm 0.3 \ / \ 0.05 \pm 0.02 \ / \ 5.4 \pm 0.4 \ / \ 0.80 \pm 0.02$ | | 17.6 mph
1.9 mph/sec | | West LA (2013) | 16.4 ± 0.6 / 2.2 ± 0.2 / 2.2 ± 0.1 / 0.16 ± 0.02 / 3.5 ± 0.1 / 0.58 ± 0.02 16.6 ± 0.7 / 2.2 ± 0.2 / 1.9 ± 0.1 / 0.11 ± 0.02 / 3.1 ± 0.1 / 0.59 ± 0.02 | 23% / -22% / 42% / 41% / 27%
24% / -22% / 43% / 43% / 27% | 21.9 mph
-0.2 mph/sec | 2013 Denver, Tulsa and West Los Angeles gNO_x/kg of fuel emissions by vehicle and fuel type. Gas includes all non-diesels such as hybrids and natural gas vehicles. Trucks have been restricted to weight classes of 1 to 6. #### Three City Combined Diesel Vehicle Measurements Average gNO_x/kg of fuel for 2L and smaller diesel engine passenger vehicles Total gNO_x/kg of fuel subdivided between NO (solid or hatched, converted to (circles), diesel trucks (squares) and individual measurements for the diesel passenger vehicles with engines larger than 2L. The uncertainties plotted are standard errors of the mean. NO₂ equivalents) and NO₂ (clear) for 2L and smaller diesel engine passenger vehicles (black), diesel trucks (green) and diesel passenger vehicles with engines > 2L (blue). The uncertainties are standard errors of the mean. Tulsa 2005 (open symbols) and 2013 (filled symbols) gNO_x/kg of fuel (circles, left axis) and gNH₃/kg of fuel (triangles, right axis) emissions versus vehicle age for non-diesel vehicles. Zero year vehicles represent 2006 and 2014 model years respectively. The errors plotted are standard errors of the mean. Vehicle Age (years) Tulsa 2005 and 2013 moles of nitrogen per kilogram of fuel versus vehicle age for non-diesel vehicles. The solid bars represent the moles of nitrogen contributed by NO_x and the hatched bars the moles of nitrogen contributed by NH₃. The inset graph is an expanded view of the first 10 years. Molar percent fixed nitrogen for the NO_x (circles) and the NH₃ (triangles) contributions versus model year for the 2005 (open symbols) and 2013 (filled symbols) non-diesel Tulsa data sets. ## Conclusions - > NO_x emission reductions have outpaced NH₃ reductions at three long-term measurement sites in the US. - ➤ Non-diesel NO_x reductions largely occurred prior to the implementation of the Tier II standards. - > 2009 and newer 2L diesel passenger vehicles showed no NO_x emissions reductions with the introduction of the Tier II/LEVII emissions standards due large increases in NO₂ emissions. For the newest model year vehicles they are a significant NO_x source despite their tiny numbers. - > NH₃ reductions have lagged due to modest emissions reductions among the newest model year vehicles and increased emissions from the growing number of older vehicles with active catalytic converters. - \triangleright The newest model year vehicles small reactive nitrogen emissions are now predominately NH₃.